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In this work, we present and implement a fictitious domain method for
time dependent problems of scattering by obstacles. We focus our attention
on the case of 2D electromagnetic waves and perfectly conducting boundaries.
Such a method allows us to work with uniform meshes for the electric field,
independently of the geometry of the obstacle. The boundary condition is
taken into account via the introduction of a Lagrange multiplier that can be
interpreted as a surface current. After a brief description of the method and
a presentation of its main properties, we show the superior accuracy of this
new method over the method using a staircase-like approximation of the
boundary. Q 1997 Academic Press
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1. INTRODUCTION

In recent years, solving time dependent problems of scattering by an obstacle has
received considerable attention. Among the various techniques that have been stud-
ied, the finite difference method is one of the most attractive. This method uses a
regular grid with an explicit scheme in time and, hence, is very efficient from the
computational point of view. However, its great disadvantage is that it creates numeri-
cal diffraction when the obstacle boundary does not fit the grid mesh (see Fig. 1).

A possibility for avoiding this drawback is to use a finite element method. The
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FIG. 1. Geometry of the problem.

finite element mesh may follow exactly the boundary of the object (see Fig. 2).
Nevertheless, other drawbacks are introduced. It appears necessary to use mass
lumping to obtain an explicit scheme but this is still difficult to do in the case
of higher order finite element methods [6], especially for Maxwell’s equations.
Furthermore, the numerical implementation is much more difficult and the efficiency
of the computations is decreased by the unstructured nature of the data. Finally,
meshing the boundary of the obstacle may induce meshes of small size and meshing
the whole domain of computation with tetrahedrons is not an easy task. Moreover,
the time step has to be chosen in accordance with the grid mesh (CFL condition),
sometimes leading to small time steps.

In this paper, we investigate an alternative method for handling the scattering
problem, namely, the fictitious domain method (noted the FDM). Such methods
have recently been shown to have interesting potential for solving complicated
problems [1–3, 11, 14, 17] particularly in the stationary case. The use of the FDM
for time dependent problems is new [15]. It should reveal really efficiencies for

FIG. 2. Example of the conformous finite element mesh in 2D.
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those kinds of problems, particularly for exterior wave propagation problems such
as for scattering by obstacles as we shall demonstrate in this paper. The FDM, also
called the domain embedding method, consists in extending artificially the solution
inside the obstacle so that the new domain of computation has a very simple shape
(typically a rectangle in 2D). This extension requires the introduction of a new
variable defined only at the boundary of the obstacle. This auxiliary variable ac-
counts for the boundary condition; it can be related to a singularity across the
boundary of the obstacle of the extended function. This idea will be developed in
Section 2. The main point is that the mesh for the solution of the enlarged domain
can be chosen independently of the geometry of the obstacle. In particular, the
use of regular grids or structured meshes allows for simple and efficient computa-
tions. There is some additional computational cost due to the determination of
the new boundary unknown. However, the final numerical scheme appears to
be a slight perturbation of the scheme for the problem without an obstacle so
this cost may be considered as marginal. Theoretically, the convergence of the
method is linked to obtaining a uniform inf–sup condition which leads to a
compatibility condition between the boundary mesh and the uniform mesh [13].
Another important point is that the stability condition of the resulting scheme
is the same as the one of the finite difference scheme. Practically, it implies
that the two mesh grids cannot be chosen completely independently, but this
is not an important constraint.

The remainder of this article is divided into four sections. In Section 2, we
introduce the FDM for acoustic wave propagation with Dirichlet boundary condi-
tions. We describe the formulation of the new problem, present the space and time
discretization of this problem, and provide some remarks about error estimates.
We also investigate the stability of the numerical scheme. In Section 3, we apply the
method for the time dependent Maxwell equations, presenting a new formulation of
the electromagnetic scattering problem. The space and time discretization are also
discussed. Some numerical results are presented and discussed in Section 4. We
show the superiority of the fictitious method in terms of accuracy and memory
requirements over the method that consists in using a staircase like approximation
of the boundary. This is confirmed by a very simple 1D analysis which is presented
in Section 5.

2. A FICTITIOUS DOMAIN METHOD FOR AN ACOUSTIC PROBLEM

2.1. Presentation of the Method

We consider first the scattering of a wave by an obstacle OO, OO , Rd with d 5 2
or d 5 3. The solution is governed by the wave equation in D, the open complement
of the obstacle with a Dirichlet condition on the boundary:

2u
t2 2 Du 5 0 in D

u 5 0 on c 5 D.
(1)
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FIG. 3. Geometry of the problem.

The incident wave is generated by initial conditions at time t 5 0 given by

u(x, 0) 5 u0(x) [ H1(D),
u
t

(x, 0) 5 u1(x, 0) [ L2(D). (2)

In order to have a finite computational domain, the classical technique consists in
bounding the domain D and in imposing absorbing conditions on the exterior
boundary [21, 10]. For the sake of simplicity, a Dirichlet condition is assumed on
the exterior boundary as well. For our purpose, we choose the geometry of the
external boundary to be rectangular. We denote by V this bounded domain and
by C the rectangle V < OO. We want to solve the simple problem described by

2u
t2 2 Du 5 0 in V

u 5 0 on c

u 5 0 on C,

(3)

by the FDM (see Fig. 3).

2.1.1. Formulation of the New Problem

The main idea of the FDM is to extend u from V to the enlarged domain C to
a function (still denoted by u for simplicity) with H1(C) regularity. Note that this
regularity requirement implies the continuity of the trace of u across the boundary.

More precisely, we look for u in the space

u [ Ṽ 5 hv [ H1(C); v 5 0 on cj, (4)

and we define u as the first argument of (u, l) the solution of the following variational
evolution problem

d 2

dt 2 (u, v) 1 a(u, v) 5 b(v, l) ;v [ X

b(u, e) 5 0 ;e [ M,
(5)
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where X 5 H1
0(C) and M 5 H21/2(c). We introduce H 5 L2(C) so that X is densely

and continuously embedded in H and denote by (?, ?) the scalar product in H

(u, v) 5 E
C

uv dx, (6)

and the bilinear form a(u, v) by

a(u, v) 5 E
C

=v =u dx, (7)

which is continuous and coercive in the space X. The bilinear form b(u, e) denotes
the duality pairing between H21/2(c) and H1/2(c) and is equal to

b(u, e) 5 ke, ulc 5 E
c

e u dc. (8)

We note by u?u, i?iX , and i?iM the respective norms in H, X, and M. We have

uv u # iviX 5 Ïuv u2 1 a(v, v) ;v [ X. (9)

In principle, the FDM consists in extending the solution in the enlarged computa-
tional domain and to introduce a new unknown at the boundary. The main difference
between this approach and a standard conforming finite element approach lies in
the fact that the Dirichlet condition is taken into account in a weak sense instead
of being imposed in the functional space. It has a relationship with other approaches
as we shall demonstrate in the next two sections.

2.1.2. A Justification of (5) via Minimization Problems

To understand (5), let us consider the time t as a parameter and the function
f 5 2u/t2 as a data. We then have to solve the following problem

2Du 5 f in V

u 5 0 on c.
(10)

It is equivalent to minimize the functional J(v) 5 eC h1/2u=vu2 2 fvj dx over the
set V of functions of H1(V) satisfying the constraint v 5 0 on c. The functions
belonging to V can be seen as the restrictions of functions of Ṽ defined in (4). It
is natural to consider the enlarged minimization problem defined by

min
ṽ[Ṽ

J(ṽ) 5 E
C
H1

2
u=ṽu2 2 f̃ ṽJ dx, (11)

where for instance f̃ 5 0 on OO and f̃ 5 f on V. It is easy to verify that the restriction
of the solution of problem (11) to V is exactly the solution of problem (5) that we
are looking for. Problem (5) is a minimization problem with an equality constraint.
Its solution is the first argument of the saddle point of the Lagrangian functional
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defined by L(v, e) 5 J(v) 2 b(v, e). Noting that the derivative of this Lagrangian
is equal to zero at the optimum (u, l), we obtain

a(u, v) 5 b(v, l) 1 ( f, v) ;v [ X

b(u, e) 5 0 ;e [ M,
(12)

which gives exactly the equations of (5) if we have written f 5 22u/t2. Thus the
auxiliary unknown l of problem (5) appears as the associated Lagrange multiplier.

2.1.3. An Analogy with Integral Equations Methods

Another way to understand the system of Eqs. (5) is to say that having extended
u by continuity across c and assuming that u still satisfies the wave equation inside
OO (this means that u solves the homogeneous Dirichlet problem inside and outside),
we have in the sense of distributions on C,

2u
t2 2 Du 5 Fu

nGc
dc , (13)

where dc is the surface measure supported by c. Then, it is not difficult to reinterpret
l as being the jump of the normal derivative of u across c. This establishes an
analogy between the FDM and the integral equations for scattering problems [4].
Indeed, in this kind of method l is typically the quantity that is chosen as the
unknown. Nevertheless let us point out a very important difference between our
approach and these methods. Integral equations are known to lead, after discretiza-
tion, to the solution of full linear systems in l; as will be shown later, this will not
be the case for the FDM.

2.2. Finite Element Approximation and Time Discretization

2.2.1. Space Discretization

Let Xh (respectively Mh) be a finite dimensional subspace of X (respectively
H21/2(c)). We approximate the variational problem (5) by

Find uh [ Xh , lh [ Mh such that

d 2

dt 2 (uh , vh) 1 a(uh , vh) 5 b(vh , lh) ;vh [ Xh

b(uh , eh) 5 0 ;eh [ Mh .
(14)

Spaces Xh and Mh can be taken ‘‘independent’’ from each other. For instance, Xh

can be a P1 or Q1 finite elements space based on a regular mesh in C and Mh is
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FIG. 4. Example of the two meshes in 2D.

some finite element space constructed from the discretization of c (see Fig. 4). Xh

and Mh will be assumed to satisfy the usual approximation properties

lim
hR0

inf
(vh[Xh)

iu 2 vhiX 5 0 ;u [ X

lim
hR0

inf
(eh[Mh)

ie 2 ehiM 5 0 ;e [ M.
(15)

Here, remembering that Mh is a subspace of H21/2(c), it makes sense to use
discontinuous functions to construct Xh and then use, for instance, piecewise con-
stant functions.

Let us introduce hvj , 1 # j # p 5 dim Xhj and hw, , 1 # , # q 5 dim Mhj two
bases for the spaces Xh and Mh . We have p 5 O(1/hd) and q 5 O(1/hd21), so q is
generally much less than p.

Let us define

• Mh 5 the p 3 p mass matrix associated with the scalar product (uh , vh)

• Ah 5 the p 3 p stiffness matrix associated with the bilinear form a(uh , vh)

• Bh 5 the q 3 p ‘‘boundary’’ matrix associated with the bilinear form b(uh, eh).

If Uh (respectively Lh) is the column vector representing the decomposition of uh

(respectively lh) on the base hvjj (respectively hw,j), we have

Mh
d 2Uh

dt 2 1 AhUh 5 Bt
hLh

(16)
BhUh 5 0,

where Bt
h is the transpose of Bh . If Mh and Ah can be interpreted respectively as

approximations of the identity and Laplace operators, Bh can be seen as a discrete
trace operator from Xh to Mh . Problem (16) appears as a system of ordinary
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differential equations with an algebraic constraint. This establishes an analogy with
problems of fluid dynamics in the incompressible case where the free divergence
is the constraint.

Remark. In the following, the elements of the mass matrix Mh are supposed to
be calculated via an appropriate quadrature formula in such a way that Mh becomes
diagonal (mass lumping). For lower order Lagrange elements, such a procedure is
well known. The case of higher order elements can be handled using the ideas
developed in [6]. Mass lumping allows us to get an explicit scheme as we will see
below. In the following, we suppose that Mh is a lumped matrix.

2.2.2. Time Discretization

For time discretization, the interval of time [0, T] is divided into N pieces of
length Dt 5 T/N. Time step Dt must be chosen in accordance with the space step
of the mesh defined on the computational domain in order to satisfy the stability
condition, as will be seen later. We use the three time step finite difference explicit
scheme for the time derivatives

Un11
h 2 2Un

h 1 Un21
h 5 2Dt2 M21

h AhUn
h 1 Dt2 M21

h Bt
hLn

h (17.1)

BhUn
h 5 0. (17.2)

To compute the solution explicitly, an apparent difficulty appears with the condition
BhUn

h 5 0. In fact for practical computation, the condition (17.2) is replaced by an
equivalent condition which results from multiplying the first equation by Bh :

Bh(Un11
h 2 2Un

h 1 Un21
h ) 5 2Dt2 BhM21

h AhUn
h 1 Dt2 BhM21

h Bt
hLn

h . (18)

Because Eq. (17.2) holds at each time step, the left side of Eq. (18) vanishes. Finally,
we obtain the system

Un11
h 5 2Un

h 2 Un21
h 2 (Dt)2M21

h AhUn
h 1 (Dt)2M21

h Bt
hLn

h (19.1)

BhM21
h Bt

hLn
h 5 Bt

hM21
h AhUn

h . (19.2)

Similarly, multiplying (19.1) by Bt
h and using Eq. (19.2), (19) leads to

Un11
h 5 2Un

h 2 Un21
h 2 Dt2 M21

h AhUn
h 1 (Dt)2M 21

h Bt
hLn

h
(20)

Bh(Un11
h 2 2Un

h 1 Un21
h ) 5 0.

If we suppose that at initial times (n 5 0, n 5 1) the condition BhUn
h 5 0 holds,

by induction over n, it is easy to see that the condition BhUn
h 5 0 is true for all

time. So system (19) implies system (17).
In conclusion, systems (17) and (19) are equivalent as soon as we have at ini-

tial times

BhU0
h 5 BhU1

h 5 0, (21)
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which is, in fact, nothing but a compatibility condition between the boundary and
initial conditions.

Finally, let us assume (Un21
h , Un

h) to be known; then (Un
h , Un11

h ) is computed by
the following procedure:

• first, solve equation BhM21
h Bt

hLn
h 5 BhM21

h AhUn
h to get the Lagrange multiplier

Ln
h ;

• second, get the wave solution at n 1 1 via (19.1).

For the computation of the Lagrange multiplier, we must invert the matrix Q 5

BhM21
h Bt

h . In the following, we make some remarks about the matrix Q.

2.3. Properties of the Matrix Q

The following properties of the matrix Q 5 BhM21
h Bt

h are easily derived:

• Q is symmetric and positive.

• The size of Q is exactly (q, q) which is very small compared to the size of
matrix Ah since in practice we have q ! p.

• Q is a sparse matrix with narrow bandwidth (see Section 4.2).

The last property is linked to the sparsity of the matrix Bh . This matrix couples
the solution uh to the Langrange multiplier lh and its coefficient b(vi , wj) vanishes
if the support of the two basis functions (vi , wj) do not intersect.

Thus, if Q21 exists, then the inversion of Q can be performed by a Cholesky
factorization or by a conjugate gradient algorithm. There remains the crucial ques-
tion of the existence of this inverse. Definiteness of Q is ensured as soon as the
kernel of the matrix Bt

h is equal to 0. This is related to a property of the continuous
variational problem. More precisely, the key condition for the existence of the
multiplier l in the variational formulation (5) is the inf–sup condition,

inf
(l[M)

sup
(v[X)

b(v, l)
iliMiviX

5 C . 0. (22)

Similarly, the existence of (uh , lh) and the convergence of the method when h tends
to zero is linked to the uniform discrete inf–sup condition,

'C9 independent of h such that inf
(l[Mh)

sup
(v[Xh)

b(v, l)
iliMiviX

5 C9 . 0. (23)

This condition requires a compatibility relation between the two meshes. It imposes
a condition between the dimensions of the two spaces Xh and Mh . Such a condition
can be found in [13], where elliptic problems are studied. More precisely, it is
demonstrated theoretically that if the space increment hs used for the discretization
of the obstacle is three times larger than the space increment hv used for the
regular squared mesh, the uniform inf–sup condition holds. However, numerical
experiments show that this condition can be relaxed from three to a number slightly
larger than one. In any case, hv must be smaller than hs . Consequently, for a given
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space increment it is impossible to use the FDM for obstacles whose geometry is
very irregular with respect to hv .

2.4. About Error Estimates

Here, we estimate the error between the approximate solution (uh , lh) of the
semi-discrete problem (14) and the exact solution (u, l) of problem (5), provided
that this solution is regular enough. To do so, we suppose that the uniform discrete
condition (23) is fulfilled. Following Dupont [9] or Brezzi [5], we introduce the
elliptic operator defined from X 3 M to Xh 3 Mh by

Ph(u, l) 5 (Phu, Phl), (24)

a(u 2 Phu, vh) 5 b(vh , l 2 Phl) ;vh [ Xh

b(u 2 Phu, eh) 5 0 ;eh [ Mh .
(25)

It can be shown [5] that the uniform inf–sup condition joined to the coercivity of
the bilinear form a ensures the existence and the uniqueness of Ph .

Using Ph , the error between the approximate solution and the exact solution is
split into two parts:

u 2 uh(t) 5 (u(t) 2 Phu(t)) 1 (Phu(t) 2 uh(t)) 5 «h(t) 1 hh(t)
(26)

l 2 lh(t) 5 (l(t) 2 Phl(t)) 1 (Phl(t) 2 lh(t)) 5 uh(t) 1 th(t).

By setting

i(u, l) 2 Ph(u, l)i 5 iu(t) 2 Phu(t)iX 1 il(t) 2 Phl(t)iM , (27)

we have the classical result,

's, independent of h such that

(28)
i(u, l) 2 Ph(u, l)i # s H inf

vh[Xh

iu(t) 2 vhiX 1 inf
eh[Mh

il(t) 2 ehiMJ .

This shows by (15) that «h and uh tend to zero uniformly in time (t [ [0, T]). In
the same way, if (u, l) [ C 3(0, T; X) 3 C 3(0, T; M) the same estimates hold for
the second and third time derivatives of the errors. In particular,

's independent of h such that if k 5 2, 3 ;t $ 0

(29)Id k«h

dt k I
X

# s H inf
(vh[Xh)

Id ku(t)
dt k 2 vhI

X

1 inf
(eh[Mh)

Id kl(t)
dt k 2 ehI

M

J .
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Let us assume that

uh(0) 5 Phu(0)

(30)duh

dt
(0) 5 Ph

du
dt

(0)

(i.e., we impose no error at time t 5 0 to simplify); then with appropriate energy
estimates we obtain (see Appendix 1)

ihh(t)iX # St 2

2
1 tD sup

[0,t]
u
d 2«h

dt 2 u
(31)

ith(t)iM #
1

C9
SM St 2

2
1 tD1 1D sup

s[[0,t]
Ud 2«h

dt 2 U1 t sup
s[[0,t]

Ud 3«h

dt 3 U .

In Eq. (31), we have denoted by M the continuity constant of the bilinear form
a(?, ?),

a(u, v) # M iuiXiviX ;(u, v) [ X 3 X, (32)

and by C9 the constant for the inf–sup condition. In conclusion, all the quantities
(«h(t), uh(t), hh(t), th(t)) go to zero when h vanishes, uniformly for t in any bounded
interval, as soon as the uniform discrete inf–sup condition is met. This implies that
the error between the exact solution of problem (5) and the approximate solution
of the semi-discrete problem (14) converges to zero as h tends to zero.

2.5. Stability

In this section, the stability of the numerical scheme is studied. The remarkable
result is that our new scheme is stable under exactly the same conditons as in the
case without an obstacle. We define the discrete energy

E n11/2
h 5

1
2 HUun11

h 2 un
h

Dt U2

1 a(un11
h , un

h)J . (33)

We remark that scheme (17) is the ‘‘matrix form’’ of the variational scheme

Sun11
h 2 2un

h 1 un21
h

Dt 2 , vhD1 a(un
h , vh) 5 b(vh , ln

h) ;vh [ Xh

b(un
h , eh) 5 0 ;eh [ Mh .

(34)

Taking vh 5 (un11
h 2 un21

h )/2 Dt, we obtain

E n11/2
h 2 E n21/2

h

Dt
1 b Sun11

h 2 un21
h

2 Dt
, ln

hD5 0. (35)
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Then if we take eh 5 ln21
h (respectively eh 5 ln11

h ), we see that b(un
h , ln21

h ) 5 0
(respectively b(un

h , ln11
h ) 5 0) for all n. Therefore, b((un11

h 2 un21
h )/2 Dt, ln

h) 5 0.
So the discrete energy E n11/2

h is conserved.
Rewriting (33) as

E n11/2
h 5

1
2 Uun11

h 2 un
h

Dt U2

2
1
2

a Sun11
h 2 un

h

2
,
un11

h 2 un
h

2 D1
1
2

a Sun11
h 1 un

h

2
,
un11

h 1 un
h

2 D , (36)

the discrete energy E n11/2
h is a positive quadratic form in (un

h , un11
h ) as soon as

uvhu2 2
(Dt)2

4
a(vh , vh) . 0 ;vh [ Xh . (37)

In this case, there is conservation of discrete energy and the scheme is L2 stable.
Condition (37) is nothing else than the usual CFL condition

Dt
h

, aCFL , (38)

where aCFL is the stability threshold defined by

a2
CFL 5 Hsup

u[Xh

h2a(u, u)
4 uuu2 J21

. (39)

3. FICTITIOUS DOMAIN SOLUTION FOR THE MAXWELL EQUATIONS

3.1. Generalities

We deal with the scattering of an electromagnetic wave by a perfect conductor
denoted by OO (OO , Rd with d 5 2 or d 5 3). We reuse the same abstract formalism
as in Section 2. Let us first rewrite the Maxwell equations in term of the only
electric field. The field satisfies the equations

2E
t 2 1 curl(curl E) 5 0 in Rd\OO

(40)
n ` (E ` n) 5 0 on c.

A Dirichlet condition or an absorbing boundary condition is assumed on the exterior
boundary of the rectangular computation domain. This problem can still be written
in the abstract form (5) with the following identification:
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u 5 E is the electric field

v 5 F is the associated test function

X 5 H(curl, C)

M 5 H21/2(divc , c) if d 5 3; M 5 H1/2
t (c) if d 5 2

(41)

(u, v) 5 E
C

uv dx

a(u, v) 5 E
C

curl(u) curl(v) dx

b(u, l) 5 E
c

n ` (E ` n).l dc.

Let us recall that H21/2(divc , c) 5 hv/v [ H21/2
t (c), divc(v) [ H21/2

t (c)j and
H21/2

t 5 hv/v [ H21/2(c)/kv, fl 5 0 ;f [ H1/2(c)/f ` n 5 0j (see [8, 16] for more
details) and divc(v) is the tangential divergence on c.

Physically, it is interesting to notice that the Lagrange multiplier represents the
derivative in time of a surface current localized on the perfect conductor. In the
following, we shall discuss the finite element approximation of problem (40)–(41).

3.2. Finite Element Approximation

3.2.1. Elements of Xh

In order to take advantage of the FDM, we use regular grids for discretizing the
domain C. In the 2D (respectively 3D) case, we use squares (respectively cubes).
We consider for simplicity the lowest order Nédelec elements of the space H(curl)
[19]. The degrees of freedom of such elements are the values of the tangential
component at the middle of the edges. A corresponding set of basis functions is
obtained by associating to each edge the function whose tangential component is
equal to one on that edge and equal to zero on the others.

The electric field is equal to E 5 op
k51 Ekvk , where p is the number of degrees

of freedom in the space H(curl).

3.2.2. Elements of Mh

In the 2D case, the Lagrange multiplier belongs to H1/2
t (c). We can approximate

the boundary c by segments and choose the P1 elements for the approximation
of the Lagrange multiplier. In the 3D case, the Lagrange multiplier belongs to
H21/2(divc , c). The boundary which is now a surface, can be approximated by
triangles and we can choose the lowest order Raviart–Thomas elements for Mh

[12, 20]. The degrees of freedom are the values of the normal components at the
middle of the edges.

The multiplier can be written l 5 oq
k51 Lkwk , where q is the number of degrees

of freedom.
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3.2.3. The Discrete Variational Problem

The problem is rewritten in the abstract form (16). The matrices are now defined
by Mh(l, k) 5 eC vlvk dx for the mass matrix, Ah(l, k) 5 eC curl(vl) curl(vk) dx for
the stiffness matrix, and Bh(k, l) 5 ec vlwk dx for the ‘‘boundary matrix.’’

3.2.4. Time Discretization

We have used the standard finite difference scheme for the time derivatives.
After mass lumping, the problem to be solved is

E n11
h 2 2E n

h 1 E n21
h 5 2Dt 2 M21

h AhE n
h 1 Dt 2M21

h Bt
hLn

h (42.1)

BhE n
h 5 0 (42.2)

On a regular mesh, the electric field at time n Dt can be split in two parts

E(n Dt) 5 O
i, j

E n
i11/2, jx 1 O

i, j
E n

i, j11/2y, (43)

where E n
i11/2, j denotes the x-component of the electric field at time n 3 Dt and at

point ((i 1 As)lx , jly) (i.e., at a point located at the middle of a horizontal wedge)
and E n

i, j11/2 is defined similarly. Without the obstacle, the scheme is written as

E n11
i11/2, j 5 2E n

i11/2, j 2 E n21
i11/2, j

1
Dt 2

l2
y

(2E n
i11/2, j11 1 2E n

i11/2, j 2 E n
i11/2, j21)

1
Dt 2

lxly
(E n

i, j21/2 2 E n
i11, j21/2 1 E n

i11, j11/2 2 E n
i, j11/2), i 5 1, ..., p

(44)

E n11
i, j11/2 5 2E n

i, j11/2 2 E n21
i, j11/2

1
Dt 2

l2
x

(2E n
i11, j11/2 1 2E n

i, j11/2 2 E n
i21, j11/2)

1
Dt 2

lx ly
(E n

i21/2, j 2 E n
i21/2, j11 1 E n

i11/2, j11 2 E n
i11/2, j), j 5 1, ..., q.

One of the important properties of this scheme is that it can be reinterpreted in
the framework of the finite-difference time-domain method or FDTD [21]. Let us
consider the system

Hn11/2 2 Hn21/2

Dt
1 RhE n 5 0

E n11 2 E n

Dt
2 Rt

hHn11/2 5
1
h2 Bt

hln11/2 (45)

BhE n 5 0,
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where Rh stands for the discrete curl operator constructed on staggered grids of
steps h and Rt

h for its transpose. If we forget about the term in ln11/2, the two first
equations in (45) are nothing else than the classical Yee scheme for the FDTD
[22]. From (45), we deduce

1
Dt SEn11 2 En

Dt
2

En 2 En21

Dt D2 Rt
h SHn11/2 2 Hn21/2

Dt D
5

1
h2 Bt

h Sln11/2 2 ln21/2

Dt D ,

or

h2 En11 2 2En 1 En21

Dt2 1 h2Rt
hRhEn 5 Bt

hLn
h ,

where we have set

ln11/2 2 ln21/2

Dt
5 Ln.

If we remark that the assembly of the mass matrix and stiffness matrices for the
lowest order Nédelec’s elements calculated with mass lumping [18] and for isotropic
meshes (i.e., lx 5 ly 5 h) gives

Mh 5 h2Id, Ah 5 h2Rt
hRh ,

we finally obtain equivalence between systems (42) and (45).
As suggested in [7], the scheme can be solved into

H n11/2 5 H n21/2 2 DtRhEn

En11
FDTD 5 E n 1 DtRt

hH n11/2 (46)

Ln 5 SBh
1
h2 Bt

hD21

Bh En11
FDTD

En11 5 En11
FDTD 2

Dt
h2 Bt

h Ln.

In system (46), the obstacle is incorporated inside the scheme by modifying the classi-
cal two-step FDTD. At first, the surface current Ln is determined by solving the small
linear system with matrix Bh Bt

h ; then, the electric field is modified to take into account
this current. What we finally propose here is to include diffraction effects by simply
adding two steps to the classical calculation. This remark is important as most of the
usual codes for transient electromagnetics are based on FDTD.

In the next part, numerical results are presented with a Dirichlet condition on the
outer boundary of the obstacle or with a second order absorbing boundary condition.
Note that the choice of the conditions at the boundary is crucial to bound the computa-
tion domain but is not related with the implementation of the FDM.



922 COLLINO, JOLY, AND MILLOT

4. NUMERICAL EXPERIMENTS

4.1. Generalities

The FDTD has been used extensively to compute scattering from perfectly con-
ducting targets, [21]. We propose to adapt the FDM to improve the computation
of electromagnetic scattering for obstacles of complicated shapes in this context
(as seen in Section 3.2.5, the final numerical scheme is only a slight perturbation
of the FDTD equations). Our aim is to demonstrate that the solution obtained
from the FDM is better in terms of accuracy than the solution obtained by approxi-
mating the exact boundary by a staircase discrete boundary. In fact, simple problems
in 2D are presented.

The test problems to be discussed concern the solution of the problem described
in Sections 3.1 and 3.2. We perform a Cholesky factorization of the matrix
BhM 21

h Bt
h before starting the time iterations.

4.2. Computation of the Matrix B

The matrix Bh can be seen as a discrete trace operator from Xh to Mh and can
be written as a line integral,

Bh(i, j) 5 E
c

vj wi ds. (47)

For more simplicity, we have chosen to take the P0 element basis for the discretiza-
tion of the space M. In theory, this choice does not fit the general framework
described in Sections 2 and 3 since piecewise constant functions do not belong to
H1/2. However, since we choose a subspace of L2 for approximating both H1/2 and
H21/2, the bilinear form b(v, l) defined by (47) still makes sense as an integral in
the discrete case, which justifies our choice.

The computation of the integral (47) can be done in two ways. First it is evaluated
by means of an exact computation requiring the intersection between the volume
and surface meshes Xh and Mh and some integration of quadratic functions. Second,
the integral can be done with an approximate computation based on a Riemann sum.

The numerical implementation of the Riemann method is very easy and can be
used to test the first method. But the method based on the exact computation
appears to be more efficient in computation time.

We show in Fig. 5 the sparsity pattern of the matrix Q 5 BhM 21
h B t

h when the
obstacle is a disk and when hs is equal to hv . Let us recall that hv (respectively hs )
is the space increment used for the discretization of the computational domain
(respectively of the boundary). The matrix Q has 2% nonzero coefficients and its
bandwidth is equal to 8. In Fig. 6, the condition number of the matrix versus hs/hv

for two types of geometries is depicted. As a result, the condition number of
the matrix is better as hs/hv increases and, thus, independently of the shape of
the obstacle.
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FIG. 5. Example of the sparsity pattern of the matrix Q where nz is the number of nonzero coefficients.

4.3. A First Test: Reflection on a Plane

A first experiment deals with the reflection on a plane of a wave produced by a
point source in 2D,

S(p, t) 5 g(t) curl (d(p 2 ps ) ? e3 ), g(t) 5
d
dt

(exp2(t/t0)2
), (48)

where e3 is the vector perpendicular to the computational plane, t0 is equal to 0.145

FIG. 6. Matrix condition number versus hs/hv (———, when the obstacle is an inclined plane and
? ? ? , when the obstacle is a disk).
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FIG. 7. Time evolution of the source and its Fourier transform.

s, and ps is a point located at 0.68 m from the reflecting plane (see Fig. 7). We
consider two cases: the reference case where the plane is vertical (noted case A)
and the test case where the plane is inclined at an angle u with the vertical plane
(noted case B). In case A, the object is discretized on the regular grid mesh. The
finite difference method and the FDM give the same results. On the contrary, in
case B, the object does not coincide with the regular grids. Figures 8 and 9 compare

FIG. 8. Snapshot at t 5 1.26 s of the tangential component of the electric field with a vertical
reflecting plane P.
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FIG. 9. Snapshot at t 5 1.26 s of the tangential component of the electric field when the plane P
is inclined at an angle of 288.

two snapshots taken at the same instant and computed by the FDM for the two
positions of the reflecting plane. We have drawn the level curves of the tangential
component of the electric field at time t 5 1.26 s. On the right side of the figure,
the propagation of the point source can be seen. The reflection of the conducting
plane appears on the left side of the figures. We can see the distortion of the wave
surface. Because we have extended the fields to all the computational domain, small
values of the tangential field are located on the left of the position of the conducting
plane. A good agreement of the two pictures (Figs. 8 and 9) can be seen.

We compare now the FDM with the solution obtained by the method using the
staircase approximation of the boundary. Figures 10–14 give the trace-recording
of the modulus of the electric field at a point pM located at 0.34 m from the reflecting
plane. From the initial time to the time t 5 1.2 s, we see only the propagation of
the point source. After the time t 5 1.2 s, reflected waves are present. Figure 11
(zoom of Fig. 10) is more interesting since it plots the area of time corresponding
to the arrival of reflected waves. It clearly shows the gain in accuracy due to the
FDM when one discretizes with 10 points per shortest wavelength (l2 5 0.2 ⇒ hv

5 0.02). To verify the stability of the solution obtained from the FDM, we decrease
the space increment hv . Of course (see Fig. 12 corresponding to the same comparison
but with hv 5 0.01), when the step size goes to zero, all solutions converge to the
true solution. Figures 13 and 14 show that the quality of the results is not affected
when one increases the step on the boundary for a fixed space increment. This is
interesting since the computational cost due to the auxiliary unknown determination
is linked to the size of the matrix Q which has been decreased.
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FIG. 10. Trace-recording of the modulus of the electric field (ua) versus time (t) (———, reference
case; 1, test case, *, stair case) (hv 5 hs 5 0.02).

4.4. A Second Test: A Wedge

We have computed the electric field reflected by a dihedral (see Fig. 15) when
it is illuminated by a harmonic wave. The incident electric field propagates in the
x-direction and has only a component on the y-axis

Einc(t, x, y) 5
dg(t)

dt
d(x 2 xs )ey ; g(t) 5 (exp2(t/t0)2

), (49)

FIG. 11. Zoom of Fig. 10.
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FIG. 12. Same as Fig. 10, but with hv 5 hs 5 0.01.

where xs is an abscissa located at 0.2 from the wedge. Figures 16 and 17 give the
snapshots of the y-component of the total electric field at different times. On these
figures, we can see both the propagation of the incident field and the reflection on
the conducting target. First, we remark that the wave surface is not planar but is
distorted near the obstacle. Second, the obstacle also creates a backscattered wave
which can be seen in front of the incident field.

Figure 18 shows the trace-recording obtained from the FDM of the electric field
when the number of points by wavelength is increased. All the curves are close to

FIG. 13. Same as Fig. 10, but with hv 5 0.02, hs 5 0.03.
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FIG. 14. Same as Fig. 10, but with hv 5 0.02, hs 5 0.04.

each other. So a discretization with 10 points per wavelength seems to be adequate
for the FDM.

Figures 19–21 compare the amplitude of the electric field obtained with the
staircase approximation of the boundary and for various numbers of points per
wavelength (10, 20, 40) with the results obtained by the fictitious method with 10
points per wavelength. All the curves obtained with the staircase approximation
present oscillations due to the numerical diffractions. We cal also remark that these

FIG. 15. Configuration of the scattering problem in the x–y plane (M1, (0.3, 1); M2(0.6, 0.9);
M3(0.3, 0.75)).
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FIG. 16. Snapshot of the y-component of the electric field at time t 5 0.13 s.

curves tend to fit the curve obtained from the fictitious domain method when the
number of points per wavelength is increased. In conclusion, the fictitious domain
method appears to be more efficient in the cases investigated.

5. A PLANE WAVE ANALYSIS OF A 1D PROBLEM

We have shown by numerical examples the superiority in terms of accuracy
of the fictitious method over a method consisting in using a staircase approxi-

FIG. 17. Same as Fig. 16, but at time t 5 27 s.
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FIG. 18. Trace-recording of the modulus of the electric field (ua) versus time (t) at M1 obtained
by the fictitious method for various values of the number of points per wavelength nw (– – :nw 5 10,
–. :nw 5 20, – :nw 5 40).

mation of the boundary. In this section we want to illustrate this superiority by an
academic case. This section is devoted to a plane wave analysis of a simple
problem: a 1D wave equation with a boundary Dirichlet condition (see
Fig. 22).

FIG. 19. Trace-recording of the modulus of the electric field (ua) versus time (t) at M1 obtained
by (? ? ? :fictitious method (nw 5 10), – – :FDTD method (nw 5 10), –. :FDTD (nw 5 20), – :FDTD
(nw 5 40)).
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FIG. 20. Same as Fig. 19 at M2 (0.6, 0.9).

More precisely, we consider the problem

2u
t2 2

2u
x2 5 0, x , x, ,

(50)

u(x 5 x,) 5 0.

Let Dt and h to be the time and space steps. We assume that the point x, is close
to the point 0:

x, 5 ,h, 0 # , # As. (51)

FIG. 21. Same as Fig. 19 at M3 (0.3, 0.75).
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FIG. 22. Geometry of the problem.

The classical space and time second-order scheme for the staircase approximation
is given by

un11
j 2 2un

j 2 un21
j

Dt2 2
un

j11 2 2un
j 1 un

j21

h2 5 0 ;j # 21

(52)
un

0 5 0.

In this case (staircase approximation), the point x, has been shifted to the point 0.
On the other hand, it is not difficult to write the scheme obtained by the fictitious

domain method as

un11
j 2 2un

j 2 un21
j

Dt2 2
un

j11 2 2un
j 1 un

j21

h2 5
ln

h
((1 2 ,)d 0

j 1 ,d1
j ) ;j

(53)
,un

1 1 (1 2 ,)un
0 5 0.

The problem has been extended to the whole space and a Lagrange multiplier l

has been added. Now, let us consider the plane wave solutions.
For the continuous problem (50), an incident plane wave gives rise to a reflected

wave and the corresponding solution can be written as

u(x, t) 5 eigt(e2ik(x2x,) 1 Reik(x2x,)), x # x, ,

g 5 k (dispersion relation)

R 5 21 (reflection coefficient).

(54)

For the staircase scheme (52), we obtain

un
j 5 eignDt (e2ikh( j2,) 1 Reikh( j2,)), j # 0,

2
Dt

sin Sg
Dt
2 D5

2
h

sin Sk
h
2D (dispersion relation), (55)

R 5 2e2ikhl (reflection coefficient),
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while for the fictitious domain scheme (53), the incident plane wave gives rise not
only to a reflected wave but also to a transmitted wave inside the fictitious domain.
More precisely, the solution we are looking for can be written as

un
j 5 eignDt(e2ikh( j2,) 1 Reikh( j2,)), j # 0,

un
j 5 eignDtTe2ikh( j2,), j $ 1, (56)

ln 5 eignDtl̂

2
Dt

sin Sg
Dt
2 D5

2
h

sin Sk
h
2D (dispersion relation).

To find the three unknowns R, T, and l̂ in (56), the equations of the scheme
associated with the nodes j 5 0 and j 5 1, as well as the constraint equation, are
used. The system is obtained,

z, 1 R(1/z), 2 Tz, 5 2l̂h,

T(1/z)(12,) 2 ((1/z)(12,) 1 Rz(12,) 5 2l̂h(1 2 ,) (57)

,T(1/z)(12,) 1 (1 2 ,)(z, 1 R(1/z),) 5 0,

where z is given by

z 5 eikh. (58)

Solving (57)–(58) gives

l̂h 5
(z 2 z21)(2,z,212z, 1 ,z,)z

2, 2 2,2 1 z 2 2,z 1 2,2z

R 5 2
(2z2,21, 2 2z2,21,2 1 z2, 2 2,z2, 1 ,2z2, 1 z2,22,2)z

2, 2 2,2 1 z 2 2,z 1 2,2z
(59)

T 5
,(1 2 , 2 z2 1 ,z2 )

2, 2 2,2 1 z 2 2,z 1 2,2z
.

To compare the two schemes, we define

«ST 5 uRstaircase 2 Rcontinuousu 5 uz2, 2 1u (60)

«FD 5 uRfictitious domain 2 Rcontinuousu.

A Taylor expansion provides

«ST 5 2,gh 1 O((gh)2 ) (61)

«FD 5 2,(1 2 ,)gh 1 O((gh2 )).

As a result, both methods are first order with respect to gh. Note that the trans-
mission coefficient T is also first order with respect to gh. However, since 2,(1 2
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FIG. 23. Errors of the reflection coefficient (–––, staircase and —, fictitious case) versus the inverse
of points per wavelength.

,) # 2,, the error is smaller for the fictitious domain method than for the staircase
approximation method, especially when , approaches As. This is confirmed by the
curves of the Fig. 23 which compares the errors of the two approaches for different
discretizations.

Figure 23 shows the variation of the errors versus the inverse of the number of
points per wavelength. The Courant number Dt/h is 1/Ï2 and the location of the
point x, corresponds to h/2 (, 5 As). Although the fictitious method remains first
order with respect to the discretization steps, it clearly improves the precision of
the reflection coefficient.

Remark. It is easy to see that if , 5 As, the reflection coefficient obtained from
the fictitious method is one half of the one obtained using the staircase like approxi-
mation.

6. CONCLUSION

A fictitious domain method has been introduced for unsteady scattering problems.
This method consists in extending the solution inside the object and in introducing
an auxiliary variable defined on the boundary. Its main advantage is to permit the
use of uniform meshes for the solution. An additional cost is due to the computation
of the auxiliary variable. This also imposes a nonrestrictive compatibility relation
between the boundary mesh for the auxiliary unknown and the uniform mesh for
the solution. In this paper, we have applied this method for solving time dependent
Maxwell’s equations. We have tested this algorithm in the 2D case for scattering
on a perfect conductor plane. Numerical results show the superiority (in terms of
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accuracy and memory space) of the fictitious method over the FDTD method.
This method may also be extended for solving three-dimensional problems where
geometrical difficulties result from the intersection of the two meshes [7]. This
fictitious method is applied to solving problems with a Dirichlet condition on the
boundary of the obstacle. Moreover, it may be used also for problems with a
Neumann condition on the obstacle without any difficulty. But some investigation
is necessary to treat other boundary conditions as an impedance condition. This
will be the subject of a future work.

APPENDIX 1: ABOUT ERROR ESTIMATES

The aim of this appendix is to derive the inequalities (31) of Section 2.4. We
start from the variational equalities satisfied by u(t) applied to a test function v 5

vh in Xh ,

d 2

dt 2 (u, vh ) 5 2a(u, vh ) 1 b(vh, l) ;vh [ Xh, (62)

or, using «h(t) 5 Phu(t) 2 u(t),

d 2

dt2 (Phu, vh ) 5 2a(u, vh) 1 b(vh, l) 2 Sd 2«h

dt2 , vhD ;vh [ Xh. (63)

The definition of the elliptic projector allows us to replace (u, l) by (Phu, Phl), i.e.,

d 2

dt2 (Ph u, vh ) 1 a(Ph u, vh ) 2 b(vh , Ph l) 5 2 Sd 2«h

dt2 , vhD.

Otherwise, uh verifies

d 2

dt2 (uh, vh) 5 2a(uh, vh) 1 b(vh, lh) ;vh [ Xh . (65)

Subtracting (65) from (64), and using d 2hh/dt2 [ X (regularity of u(t) and uh(t)),
we obtain

Sd 2hh

dt2 , vhD1 a(hh , vh) 2 b(vh, th) 5 2 Sd 2«h

dt2 , vhD ;vh [ Xh . (66)

Now, hh is such that

b(hh(t), eh) 5 b(Phu 2 u, eh) 1 b(u, eh) 2 b(uh, eh) ;eh [ Mh , (67)
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from which we deduce, using the properties of Ph and the definition of u and uh ,

b(hh(t), eh) 5 b Sdkhh(t)
dtk , ehD5 0 ;eh [ Mh , k 5 1, 2. (68)

Let us set vh 5 dhh/dt in (66), we obtain

d
dt S1

2
Eh(t)D2 b Sdhh

dt
, thD5 Sd 2«h

dt2 ,
dhh

dt D
(69)

Eh(t) 5 Udhh

dt U2

1 a(hh , hh);

taking k 5 1, eh 5 th(t) in (68), the b term vanishes and we get

1
2

d
dt

(Eh(t)) # Ud2«h

dt2 U Udhh

dt U⇒ d
dt

E1/2
h # Ud 2«h

dt2 U. (70)

Using the fact

uh(0) 5 Phu(0) and
duh

dt
(0) 5 Ph

du
dt

(0), (71)

we have

Ïa(hh, hh) and Udhh

dt U# Et

0

dE1/2
h

ds
(s) ds # t sup

[0,t]
Ud 2«h

dt2 U ,

uhh(t)u # Et

0
E1/2

h (s) ds # Et

0
Es

0
Ud2«h

dt2 U ds dt #
t2

2
sup
[0,t]

Ud2«h

dt2 U;
(72)

therefore,

ihhiX 5 Ïuhhu2 1 a(hh, hh) # St2

2
1 tD sup

[0,t]
Ud 2«h

dt2 U. (73)

We have obtained the inequality (31) for the error hh . To get the second inequality,
we start from the inf–sup condition

ith(t)iM #
1

C9
sup

vh[Xh

b(vh, th )
ivhiX

, (74)

and we use both Eq. (66) and the continuity of the bilinear form a to get

ub(vh, th)u # USd 2hh(t)
dt2 , vhDU1 ua(hh(t), vh)u 1 USd2«h

dt2 , vhDU
(75)

# M ihhiXivhiX 1 SUd2hh

dt2 U1 Ud 2«h

dt2 UD uvhu ;vh [ Xh.
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Until now, we have only used the C2 regularity of the solution. In order to bound
the H-norm of d 2hh/dt2, we need C3 regularity. Indeed, in this case, all of the previous
calculations can be rewritten for the derivatives of the functions. In particular, we
have

Ud 2hh

dt2 U# t sup
[0,t]

Ud3«h

dt3 U.
Finally, combining the different results provides us with

C9ith(t)iM # SM ihhiX 1 t sup
[0,t]

Ud3«h

dt3 U1 Ud2«h

dt2 UD
# SM St2

2
1 tD1 1D sup

s[[0,t]
Ud2«h

dt2 U1 t sup
s[[0,t]

Ud3«h

dt3 U,
and the proof is achieved.
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